
International Journal of Multiphase Flow 36 (2010) 432–437
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/locate / i jmulflow
Brief Communication

Subgrid scale fluid velocity timescales seen by inertial particles in large-eddy
simulation of particle-laden turbulence

Guodong Jin a, Guo-Wei He a,*, Lian-Ping Wang b, Jian Zhang a

a LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
b Department of Mechanical Engineering, University of Delaware, Newark, DE 19716-3140, USA
a r t i c l e i n f o

Article history:
Received 8 August 2009
Received in revised form 16 November 2009
Accepted 8 December 2009
Available online 16 December 2009

Keywords:
Particle-laden turbulent flows
Large-eddy simulation
Stochastic model
Particle–subgrid scale model
Particle–subgrid scale eddy interaction
timescale
0301-9322/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2009.12.005

* Corresponding author. Tel.: +86 10 82543969; fax
E-mail addresses: hgw@lnm.imech.ac.cn, guoweihe
a b s t r a c t

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Large-eddy simulation (LES) has emerged as a promising tool
for simulating turbulent flows in general and, in recent years,
has also been applied to the particle-laden turbulence with some
success (Kassinos et al., 2007). The motion of inertial particles is
much more complicated than fluid elements, and therefore, LES
of turbulent flow laden with inertial particles encounters new
challenges. In the conventional LES, only large-scale eddies are
explicitly resolved and the effects of unresolved, small or subgrid
scale (SGS) eddies on the large-scale eddies are modeled. The
SGS turbulent flow field is not available. The effects of SGS tur-
bulent velocity field on particle motion have been studied by
Wang and Squires (1996), Armenio et al. (1999), Yamamoto
et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simo-
nin (2006), Berrouk et al. (2007), Bini and Jones (2008), and
Pozorski and Apte (2009), amongst others. One contemporary
method to include the effects of SGS eddies on inertial particle
motions is to introduce a stochastic differential equation (SDE),
that is, a Langevin stochastic equation to model the SGS fluid
velocity seen by inertial particles (Fede et al., 2006; Shotorban
and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk
et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).
ll rights reserved.
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However, the accuracy of such a Langevin equation model de-
pends primarily on the prescription of the SGS fluid velocity
autocorrelation time seen by an inertial particle or the inertial
particle–SGS eddy interaction timescale (denoted by dTLp) and
a second model constant in the diffusion term which controls
the intensity of the random force received by an inertial particle
(denoted by C0, see Eq. (7)). From the theoretical point of view,
dTLp differs significantly from the Lagrangian fluid velocity corre-
lation time (Reeks, 1977; Wang and Stock, 1993), and this car-
ries the essential nonlinearity in the statistical modeling of
particle motion. dTLp and C0 may depend on the filter width
and particle Stokes number even for a given turbulent flow. In
previous studies, dTLp is modeled either by the fluid SGS
Lagrangian timescale (Fede et al., 2006; Shotorban and Mash-
ayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or
by a simple extension of the timescale obtained from the full
flow field (Berrouk et al., 2007).

In this work, we shall study the subtle and non-monotonic
dependence of dTLp on the filter width and particle Stokes number
using a flow field obtained from Direct Numerical Simulation
(DNS). We then propose an empirical closure model for dTLp. Final-
ly, the model is validated against LES of particle-laden turbulence
in predicting single-particle statistics such as particle kinetic
energy. As a first step, we consider the particle motion under the
one-way coupling assumption in isotropic turbulent flow and
neglect the gravitational settling effect. The one-way coupling
assumption is only valid for low particle mass loading.

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.12.005
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Fig. 1. Variation of C0 with particle Stokes number, StK , where C0 is the ratio of the
SGS fluid turbulent kinetic energy seen by inertial particles kSGS; p to the average SGS
fluid turbulent kinetic energy averaged over the whole space, kSGS, which is
obtained from the energy spectrum of the DNS flow field by kSGS ¼

R kmax

kcf
EðkÞdk. The

cutoff location is at gkcf ¼ 0:135 and kmax is the maximum wavenumber in DNS.
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2. Governing equations

The study is performed in a forced isotropic turbulent flow field
in a periodic box of side 2p. Pseudo-spectral method is used to
solve both the Navier–Stokes equations in DNS (Wang et al.,
2000) and the filtered Navier–Stokes equations in LES (Yang
et al., 2008). The locations and velocities of non-settling heavy par-
ticles ðqp � qf Þ are obtained from the equations of motion as

dxpðtÞ
dt

¼ vpðtÞ; ð1Þ

dvpðtÞ
dt

¼ ½uðxpðtÞ; tÞ � vpðtÞ�f
sp

; ð2Þ

where xpðtÞ and vpðtÞ are the instantaneous position and velocity of a
particle, respectively, sp is the particle Stokes relaxation time. f is the
correction factor for nonlinear drag which depends on the particle
Reynolds number, f ðRepÞ ¼ 1þ 0:15Re0:687

p and Rep ¼ ju� vpjdp=m.
As a quick estimate, if we assume that the relative velocity in the def-
inition of Rep is scaled as the root mean square (rms) velocity,
urms ¼ 19:32, and the particle diameter is half of the Kolmogorov
length scale, g; dp ¼ 0:5g ¼ 0:00675, the fluid kinematical viscosity
is m ¼ 0:0488 in this study, then the Reynolds number based on the
rms velocity is Rep ¼ 1:48. Since the particle Stokes number may be
much larger than one in practice, then the correct factor f in Eq. (2) ac-
counts for the nonlinear drag effect. The fluid velocity seen by an iner-
tial particle, uiðxpðtÞ; tÞ, is a sum of the resolved fluid velocity seen by
the particle, ~uiðxpðtÞ; tÞ, and the unresolved fluid velocity seen by the
particle, uiðxpðtÞ; tÞ � ~uiðxpðtÞ; tÞ. The resolved flow is calculated from
the filtered Navier–Stokes equations in LES

@~ui

@xi
¼ 0;

@~ui

@t
þ ~uj

@~ui

@xj
¼ � @

~p
@xi
þ 1

Re
@2~ui

@xj@xj
� @sij

@xj
þ fi; ð3Þ

where sij ¼guiuj � ~ui~uj is the residual stress tensor, fi is a large-scale
random forcing which is non-zero only at low wavenumbers in Fou-
rier space jkj <

ffiffiffi
8
p

(Wang et al., 2000). ~uiðxpðtÞ; tÞ is obtained from
the LES flow fields by a six-point Lagrangian interpolation scheme
in each direction (Yang et al., 2008). In this study, the Chollet–Le-
sieur spectral eddy viscosity SGS model is used for the closure of
the filtered Navier–Stokes equations (Chollet and Lesieur, 1981;
Chollet, 1983)

meðkjkcÞ ¼ mþe ðk=kcÞ

ffiffiffiffiffiffiffiffiffiffiffi
EðkcÞ

kc

s
; ð4Þ

with

mþe ðk=kcÞ ¼ C�3=2
K ½0:441þ 15:2 expð�3:03kc=kÞ�; ð5Þ

where CK is the Kolmogorov constant and CK ¼ 2:09 from the com-
pensated energy spectrum e�2=3k5=3EðkÞ in this paper. The value of
CK in our simulation is consistent with that of Kaneda et al.
(1999). EðkcÞ in Eq. (4) is the value of the energy spectrum function
at the cutoff wavenumber kc and it is dynamically evaluated from
the LES fluid field.

Similar to the previous studies (Fede et al., 2006), the full fluid
velocity seen by an inertial particle is then modeled using an ex-
tended, stochastic Langevin equation as

duþi ¼f~ui½xpðtþdtÞ;tþdt�� ~ui½xpðtÞ;t�g�
1

dTLp
ðuþi � ~uiÞdtþ 4

3
kSGS;p

dt
dTLp

� �1=2

n;

ð6Þ

where the superscript + in Eq. (6) denotes the modeled full scale
velocity, of which one part is from the resolved velocity in LES,
and the other part is from the Langevin equation. The modeled full
scale velocity is different from the real full scale velocity from the
Navier–Stokes equation in DNS. n is a Gaussian random variable
of zero mean and unit variance, kSGS; p is the fluid SGS kinetic energy
seen by an inertial particle, which may not be equal to the fluid SGS
kinetic energy averaged over the whole space, kSGS. An empirical
constant is then introduced to related the two:

kSGS; p ¼ C0kSGS; ð7Þ

where, due to the inertial bias, C0 could depend on the Stokes num-
ber. Using the DNS flow field, we can compute both kSGS; p and kSGS

and therefore determine C0. Fig. 1 shows how C0 varies with particle
Stokes number, StK , where StK is defined as StK � sp=sK and sK is
Kolmogorov timescale in DNS flow field, the cutoff location is at
gkcf ¼ 0:135 and kcf is the cutoff wavenumber used in the fil-
tered-DNS. When the Stokes number is very small or very large,
particles uniformly distribute in the flow fields, therefore, C0 tends
to be 1. However, when the Stokes number is on the order of 1, par-
ticles are found preferentially in the regions of low vorticity and
high strain rate, leading to significantly lower SGS turbulent kinetic
energy. The feature is consistent with the recent observation by
Strutt and Lightstone (2006) who showed that there is a net migra-
tion of particles towards regions of low kinetic energy. In their ide-
alized model, the flow is composed of two regions of constant
turbulent kinetic energy. They found that there is a higher probabil-
ity for particles to travel into the low kinetic energy region when
compared to the region of high kinetic energy.

The above Langevin equation assumes that the SGS fluid flow is
isotropic. It ensures that the Lagrangian SGS fluid velocity time
scale dTLp and the fluid SGS kinetic energy seen by an inertial par-
ticle kSGS; p are both consistently realized.

The equation of motion, Eq. (2), is integrated with a fourth-or-
der Adams–Bashforth method for the particle velocity and then a
fourth-order Adams–Moulton method for the particle location,
Eq. (1). When the particle inertia is negligibly small, Eqs. (1), (2)
and (6) together reduce to the governing equation for fluid parti-
cles (Gicquel et al., 2002).

The remaining closure problem is how to evaluate dTLp, a quan-
tity that requires the consideration of the SGS fluid velocity, the
particle Stokes number as well as the filter width.
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Fig. 2. Eulerian and Lagrangian autocorrelation functions of the full fluid velocity
field and the SGS fluid velocity field at gkcf ¼ 0:135.
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3. Evaluation of dTLp

The simplest closure assumption used in recent studies (Fede
et al., 2006; Shotorban and Mashayek, 2006b; Bini and Jones,
2008; Pozorski and Apte, 2009) states that dTLp is equal to the
SGS fluid velocity autocorrelation time dTL seen by a fluid element.
This is true only in the limit that St� 1. Previously, Wang and
Stock (1993) showed that the integral timescale TLp of the fluid
velocity seen by an inertial particle can vary from the fluid
Lagrangian integral time TL to the fluid Eulerian one-point integral
time TE as the particle inertia is increased in the full scale velocity
field of an isotropic turbulence. Based on the numerical simula-
tions they proposed that

TLp

TE
¼ 1� 1� TL

TE

� �
1

ð1þ St�Þ0:4ð1þ0:01St�Þ ; ð8Þ

where the particle Stokes number is defined as St� ¼ sp=TE. It is
noted that all the parameters in Eq. (8), TE; TL=TE and St� are based
on the full scale velocity field. Berrouk et al. (2007) extended the
Wang–Stock model, Eq. (8), in the context of LES by introducing a
model for dTLp as

dTLp ¼
dTL

b
1� ð1� bÞ
ð1þ StÞ0:4ð1þ0:01StÞ

" #
; ð9Þ

where St is the particle Stokes number, defined as St � sp=dTE, b is
the ratio of dTL to the fluid Eulerian SGS integral time dTE. It is
important to point out that all the parameters in Eq. (9), dTE; b
and St are based on the subgrid scale velocity field. They further as-
sumed that

b � dTL

dTE
¼ TL

TE
: ð10Þ

Eq. (10) states that the ratio of dTL to dTE in the SGS flow field is
equal to the ratio of TL to TE in the full scale flow field. We will
show later that Eq. (10) does not hold for the SGS velocity field.
However, when the correct value of b is used, the extended
Wang–Stock model, Eq. (9) , can still be applied to capture approx-
imately the dependence of dTLp on the Stokes number, see Fig. 5.

To evaluate dTLp, we make use of the flow field uðx; tÞ obtained
from DNS. The key flow parameters of the DNS flow field at
2563 grid resolution are: Taylor microscale Reynolds number
Rek ¼ 102:1, Kolmogorov time sK ¼ 0:0037, Kolmogorov velocity
vK ¼ 3:63, fluid Eulerian integral time TE ¼ 0:050 and fluid
Lagrangian integral time TL ¼ 0:037. The filtered velocity �uðx; tÞ
is calculated by truncating the high-wavenumber Fourier modes
above a cutoff wavenumber kcf . The subgrid scale velocity is then

u0ðx; tÞ ¼ uðx; tÞ � �uðx; tÞ: ð11Þ

The cutoff wavenumber kcf is varied to obtain the SGS velocity
fields with different filter widths (Fede and Simonin, 2006).

At the limit of a very small Stokes number, an inertial particle
behaves as a fluid particle. Therefore, we first study the character-
istics of the correlation functions and integral timescales of the full
fluid velocity and the SGS fluid velocity. The difference between
the Eulerian and Lagrangian correlations of the full or unfiltered
fluid velocity field, REðsÞ and RLðsÞ, has been discussed in many
studies (Kaneda and Gotoh, 1991; Yeung, 2001). The Eulerian fluid
velocity temporal correlation can be calculated as

REðsÞ ¼
huiðx0; t0Þuiðx0; t0 þ sÞi
huiðx0; t0Þuiðx0; t0Þi

; ð12Þ

and the Eulerian integral timescale is then

TE ¼
Z 1

REðsÞds: ð13Þ

0

The Lagrangian fluid velocity autocorrelation can be calculated as

RLðsÞ ¼
huiðx0; t0Þuiðxðt0 þ sÞ; t0 þ sÞi

huiðx0; t0Þuiðx0; t0Þi
; ð14Þ

and the Lagrangian integral timescale is

TL ¼
Z 1

0
RLðsÞds: ð15Þ

Fig. 2 shows the Eulerian and Lagrangian autocorrelations for
the full velocity field uðx; tÞ. Also shown are the representative
Eulerian and Lagrangian velocity autocorrelations for the SGS
velocity field u0ðx; tÞ at gkcf ¼ 0:135. The SGS Eulerian fluid velocity
autocorrelation can be calculated as

dREðsÞ ¼
u0iðx0; t0Þu0iðx0; t0 þ sÞ
� �

u0iðx0; t0Þu0iðx0; t0Þ
� � ; ð16Þ

and the SGS Eulerian integral timescale is

dTE ¼
Z 1

0
dREðsÞds: ð17Þ

The SGS Lagrangian fluid velocity autocorrelation can be calcu-
lated as

dRLðsÞ ¼
u0iðx0; t0Þu0iðxðt0 þ sÞ; t0 þ sÞ
� �

u0iðx0; t0Þu0iðx0; t0Þ
� � ; ð18Þ

and the SGS Lagrangian integral timescale is

dTL ¼
Z 1

0
dRLðsÞds: ð19Þ

Here, it is important to point out that xðt0 þ sÞ in Eqs. (14) and
(18) is the location of a fluid particle based on the full velocity field,

dxðt0 þ sÞ
ds

¼ uðxðt0 þ sÞ; t0 þ sÞ: ð20Þ

For the full velocity field, REðsÞ decays with s more slowly than
RLðsÞ at large s. In contrast, for the SGS velocity field, dREðsÞ drops
with s more quickly than dRLðsÞ. These observations imply that
TE > TL for the full velocity field ðTL=TE ¼ 0:74Þ, while dTE < dTL

for the SGS velocity field (in this particular case dTL=dTE ¼ 1:63 at
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gkcf ¼ 0:135). The present results are consistent with the previous
numerical results showing that TL=TE has a typical mean value of
0.78 and is almost independent of Rek (Yeung, 2001).

The SGS Eulerian integral timescale, dTE, can be estimated using
the SGS integral length scale, dL, and the rms velocity of the full
scale flow field, urms. This is based on the advection or sweeping ef-
fect that the decay of the Eulerian correlation at small-scale is
dominated by large-scale sweeping. In the inertial subrange, the
SGS integral length scale is dL ¼ 3p=10kcf and thus the SGS Euleri-
an integral timescale is (Fede and Simonin, 2006)

dTE ¼
3p
10

1
kcf urms

: ð21Þ

For a given turbulent flow field, the SGS Eulerian integral time-
scale is inversely proportional to the filter width. We plot the var-
iation of dTE with the filter width in Fig. 3. The circles are the
numerical results from Eqs. (12) and (13). The solid line is from
Eq. (21). It is observed that the agreement between the numerical
results and the sweeping hypothesis is satisfactory. Meanwhile, we
numerically calculate the SGS Lagrangian velocity autocorrelation
function and SGS Lagrangian integral timescale dTL using Eqs.
(18) and (19), respectively. Fig. 4 shows the SGS integral timescale
ratio of dTL to dTE; b, from the numerical results. It shows that b is
in the range from 1.33 to 2.04 and increases with a scaling of k1=3

cf in
the inertial subrange. The above conclusion concerning fluid ele-
ments alone is very important for developing a model of dTLp.

We shall now turn to the time scale dTLp seen by an inertial par-
ticle, in particular, the dependence of dTLp on particle inertia and
filter width. dTLp is obtained by integrating the SGS fluid velocity
correlation seen by an inertial particle, dRLpðsÞ, with respect to
the lag time s from 0 to 1. Here, dRLpðsÞ is calculated as

dRLpðsÞ ¼
u0iðxpðt0Þ; t0Þu0iðxpððt0 þ sÞ; t0 þ sÞ
� �

u0iðxpðt0Þ; t0Þu0iðxpðt0Þ; t0Þ
� � ; ð22Þ

It is important to note that the full velocity field is used here to
obtained the particle trajectory xpðtÞ from Eqs. (1) and (2). A wide
range of Stokes numbers ðSt ¼ sp=dTEÞ and several filter widths
(gkcf ¼ 0:135; 0:216 and 0.284) were studied. The statistics were
computed by tracking 4� 105 inertial particles. Fig. 5 plots the var-
iation of dTLp=dTL with particle Stokes number St from our DNS re-
ηkcf
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Fig. 3. Variation of the SGS Eulerian integral timescale dTE with the filter width,
gkcf .
sults (circle) and a fitted curve (solid line). Several published
relations are also shown for comparison (Fede et al., 2006; Shotor-
ban and Mashayek, 2006a; Berrouk et al., 2007).

Our DNS results show that for St < 0:03; dTLp 	 dTL or the differ-
ence between dTL and dTLp is negligible. For the particles with very
large inertia, St 	 100 or larger, they do not respond to the SGS ed-
dies, thus dTLp ! dTE. For a particle with intermediate inertia,
dTLp=dTL varies with St and this variation is non-monotonic. The ra-
tio first increases with increasing St, reaches a maximum, and then
decreases to approach the limiting value of dTE=dTL. That is be-
cause, for some range of St, the trajectory of an inertial particle
near a SGS eddy tends to deviate from the streamline due to the
centrifugal effect or the inertial bias. The inertial particle near a
vortex tube experiences a less-curved path along which the SGS
fluid velocity does not change so fast and thus the SGS fluid veloc-
ity seen by the inertial particle appears to be better correlated. This
leads to the ratio dTLp=dTL being larger than one (note that
dTE=dTL < 1). Such a non-monotonic dependence on Stokes num-
St
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Fig. 5. Variation of dTLp=dTL with particle Stokes number St, where the cutoff
location is at gkcf ¼ 0:135; St � sp=dTE .
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ber, StK , was also seen in the study of Jung et al. (2008) who studied
TLp with unfiltered flow velocity field. A maximum value for
dTLp=dTL was observed at St 
 0:5. For larger St, the inertial particle
is not very responsive to SGS fluid eddies and therefore, dTLp grad-
ually approaches dTE. Our simulation results can be fitted by an
empirical curve (solid line in Fig. 5) of the form

dTLp

dTL
¼1

b
ð0:444�0:7gkcf Þexp � ln

St
0:5

� �� �2
( )

þ1�ð1�bÞexp � St
5:15

� �( )
;

ð23Þ

where b ¼ dTL=dTE; kcf can be approximately expressed as kcf ¼ p=M
and M is the length scale of the filter width in physical space (Pope,
2000). This fit was optimized with the results from all three cutoff
locations, noting that both dTL and dTE also depend on kcf . The above
relation captures all the main characteristics of the dependence of
dTLp on St and kcf . It is worth pointing out that the first term in
the braces represents that the magnitude of the convexity near
St ¼ 0:5 depends on the filter width gkcf when St is small.

Berrouk et al. (2007) used the Wang–Stock model (Wang and
Stock, 1993) with b ¼ 0:356 (dash-dotted line). The model is qual-
itatively incorrect in the overall trend, implying that their assump-
tion, Eq. (10) should not be used for estimating SGS timescale ratio.
However, if we use the the correct value of b ¼ 1:63 based on the
SGS motion when gkcf ¼ 0:135, the extended Wang–Stock model,
Eq. (9), can predict the correct limiting behaviors for St! 0 and
St!1, and approximately capture the overall trend of the Stokes
number dependence (dashed line). As the Wang–Stock model was
developed from kinematic random flow fields where the flow
dynamics were not considered, the interesting non-monotonic
behavior of dTLp=dTL near St ¼ 0:5 could not be realized. The dotted
line is dTLp ¼ dTL (Fede et al., 2006; Shotorban and Mashayek,
2006b), this assumption is only suitable for very small St (say,
St < 0:05). Shotorban and Mashayek (2006a) modified the assump-
tion dTLp ¼ dTL by setting dTLp=dTL ¼ 1=½1þ ðsp=dTLÞ2�, their rela-
tion is plotted using the dash-dot-dotted line. Their relation
would imply that dTLp monotonically decreases to zero rather than
to dTE, with the increase of St, which is unphysical.
4. Application of dTLp to the Langevin stochastic model

Finally, we apply the closure model (Eq. (23)) and C0 shown in
Fig. 1 in the Langevin stochastic equation (Eq. (6)) in LES to study
the particle kinetic energy.

Fig. 6 compares the ratios of particle kinetic energy to fluid ki-
netic energy, as a function of Stokes number, StK , using the present
closure. For the range of Stokes numbers studied ðStK ¼ 0:1 
 30Þ,
the conventional LES under-predicts the particle kinetic energy due
to the missing of SGS fluid turbulence. However, with the increase
of particle Stokes number, the relative difference decreases. This is
expected since particles with large Stokes number are less affected
by the SGS turbulence. It is observed that the particle SGS Langevin
model with our dTLp formulation greatly improves the accuracy of
particle kinetic energy. This result is consistent with the work of
(Fede et al., 2006). In Fig. 6, we also include their results. (Fede
et al., 2006) performed a priori calculations with the filtered DNS
flow field and they focused mostly on particles with relaxation
time sp close to the SGS turbulent timescale of the flow dTL. The
resolution of their DNS flow field is 1283 and the cutoff location
of the filtered-DNS flow field is at gkcf ¼ 0:38. Their a priori calcu-
lations also showed a much better prediction when a stochastic
Langevin equation is employed. Since we covered a wider range
of particle Stokes numbers and used a higher DNS flow Reynolds
number, our results show more convincingly that the SGS Langevin
model works for small Stokes numbers. The figure also indicates
that our new closure model for dTLp led to a better overall
prediction.

It should be noted that, under the effect of gravity, a heavy par-
ticle moves relatively to the surrounding fluid with a drift velocity,
crossing the trajectories of fluid elements and interacting with dif-
ferent small-scale eddies. As a result, we expect that the timescale
of the SGS velocity seen by the heavy particle decreases as the set-
tling velocity increases. This is known as the crossing trajectory ef-
fect for a heavy particle in turbulent flows, except here in the
context of LES the interaction is restricted to SGS turbulent eddies.
Furthermore, a related effect is that the timescale in the vertical
direction is larger than that in the horizontal direction due to the
continuity effect in an incompressible turbulent flow. These effects
related to the gravity have been studied by Yudine (1959), Csanady
(1963), Reeks (1977), Wells and Stock (1983), and Wang and Stock
(1993), amongst others, for the full turbulent flow field. Qualita-
tively and in the current context of SGS eddies, we expect that
the gravity effect is important when the particle settling velocity
is comparable to the rms velocity fluctuation of the SGS flow field.
The precise dependence of the SGS fluid velocity time scale seen by
a particle on the settling velocity requires further investigation.
5. Summary and concluding remarks

In this study, we examined carefully the SGS Lagrangian corre-
lation times seen by both fluid and inertial particles. These SGS
Lagrangian statistics show qualitatively different behaviors than
the Lagrangian statistics for the full fluid velocity field. For fluid
particles, we found that dTL is larger than dTE for SGS velocity field,
whereas TL is smaller than TE for the full velocity field. This sug-
gests that it is important to relate the limiting values of dTLp to
dTL and dTE in the SGS flow field, TL and TE should not be used in
the context of recovering the SGS contributions to particle motion.

Based on the DNS flow field, we computed the SGS fluid velocity
correlation time seen by inertial particles, dTLp, for a wide range of
particle Stokes number and several filter widths. It was shown that
dTLp first increases with Stokes number, reaches a peak when St is
on the order one, and then decreases with increasing St number.
Based on these results, an empirical model for dTLp is proposed to
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take into account of the dependence of dTLp on Stokes number and
filter width. Using the Langevin stochastic equation with our new
closure model, we demonstrated that the particle kinetic energy
can be much better predicted in LES.

We recognize that in some applications, the gravitational set-
tling may also be important. This could complicate the closure of
dTLp. The more difficult problem in LES of particle-laden flows is
the prediction of particle-pair statistics, such as the radial distribu-
tion function, the pair relative velocity at contact and the collision
rate, which are more sensitive to small-scale eddies. These issues
remain to be studied.

Acknowledgments

This work was supported by CAS (KJCX2-SW-L08), 973 Program
of China (2007CB814800), NSFC (10628206, 10732090, 10702074),
the LNM initial funding for young investigators and SRF for ROCS,
SEM. G.-D. Jin would like to acknowledge the hospitality received
at the Department Mechanical Engineering, University of Delaware
during his visit. Part of his visit was supported by the US National
Science Foundation under Grant ATM-0527140.

References

Armenio, V., Piomelli, U., Fiorotto, V., 1999. Effect of the subgrid scales on particle
motion. Phys. Fluids 11, 3030–3042.

Berrouk, A.S., Laurence, D., Riley, J.J., Stock, D.E., 2007. Stochastic modelling of
inertial particle dispersion by subgrid motion for LES of high Reynolds number
pipe flow. J. Turbul. 8 (50), 1–20.

Bini, M., Jones, W.P., 2008. Large-eddy simulation of particle-laden turbulent flows.
J. Fluid Mech. 614, 207–252.

Chollet, J.-P., 1983. Two-point closures as a subgrid scale modelling for large eddy
simulations. In: Durst, F., Launder, B.E. (Eds.), Turbulent Shear Flows, vol. IV.
Springer-Verlag, Heidelberg.

Chollet, J.-P., Lesieur, M., 1981. Parameterization of small scales of three-
dimensional isotropic turbulence utilizing spectral closure. J. Atmos. Sci. 38,
2747–2757.

Csanady, G.T., 1963. Turbulent diffusion of heavy particles in the atmosphere. J.
Atmos. Sci. 20, 201–208.

Fede, P., Simonin, O., 2006. Numerical study of the subgrid fluid turbulence effects
on the statistics of heavy colliding particles. Phys. Fluids 18, 045103.
Fede, P., Simonin, O., Villedieu, P., Squires, K.D., 2006. Stochastic modeling of
turbulent subgrid fluid velocity along inertial particle trajectories. In:
Proceedings of the 2006 CTR Summer Program.

Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B., 2002. Velocity filtered density
function for large eddy simulation of turbulent flows. Phys. Fluids 14 (3), 207–
252.

Jung, J., Yeo, K., Lee, C., 2008. Behavior of heavy particles in isotropic turbulence.
Phys. Rev. E 77, 016307.

Kaneda, Y., Gotoh, K., 1991. Lagrangian velocity autocorrelation in isotropic
turbulence. Phys. Fluids A 3, 1924–1933.

Kaneda, Y., Ishihara, T., Gotoh, K., 1999. Taylor expansion in powers of time of
Lagrangian and Eulerian two-point two-time velocity correlations in
turbulence. Phys. Fluids 11, 2154–2166.

Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P., 2007. Complex Effects in Large
Eddy Simulations. Springer, Berlin.

Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
Pozorski, J., Apte, S.V., 2009. Filtered particle tracking in isotropic turbulence and

stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35,
118–128.

Reeks, M.W., 1977. On the dispersion of small particles suspended in an isotropic
turbulent fluid. J. Fluid Mech. 83, 529–546.

Shotorban, B., Mashayek, F., 2006a. On stochastic modeling of heavy particle
dispersion in large-eddy simulation of two-phase turbulent flow. In:
Balachandar, S., Prosperetti, A. (Eds.), Prodeeding of the IUTAM Symposium
on Computational Multiphase Flow. Springer, Netherlands.

Shotorban, B., Mashayek, F., 2006b. A stochastic model for particle motion in large-
eddy simulation. J. Turbul. 7 (18), 1–13.

Strutt, H.C., Lightstone, M.F., 2006. Analysis of tracer particle migration in
inhomogeneous turbulence. Int. J. Heat Mass Transfer 49, 2557–2566.

Wang, Q., Squires, K.D., 1996. Large eddy simulation of particle-laden turbulent
channel flow. Phys. Fluids 8, 1207–1223.

Wang, L.-P., Stock, A.D., 1993. Dispersion of heavy particles by turbulent motion. J.
Atmos. Sci. 50 (13), 1897–1913.

Wang, L.-P., Wexler, A.S., Zhou, Y., 2000. Statistical mechanical description and
modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117–
153.

Wells, M.R., Stock, D.E., 1983. The effects of crossing trajectories on the dispersion of
particles in a turbulent flow. J. Fluid Mech. 136, 31–62.

Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y., 2001. Large eddy
simulation of turbulent gas-particle flow in a vertical channel: effect of
considering inter-particle collisions. J. Fluid Mech. 442, 303–334.

Yang, Y., He, G.-W., Wang, L.-P., 2008. Effects of subgrid-scale modeling on
Lagrangian statistics in large-eddy simulation. J. Turbul. 9 (8), 1–24.

Yeung, P.K., 2001. Lagrangian characteristics of turbulence and scalar transport in
direct numerical simulations. J. Fluid Mech. 427, 241–274.

Yudine, M.I., 1959. Physical considerations on heavy-particle diffusion. Adv.
Geophys. 6, 185–191.


	Subgrid scale fluid velocity timescales seen by inertial particles in large-eddy  simulation of particle-laden turbulence
	Introduction
	Governing equations
	Evaluation of  \delta {T}_{Lp}
	Application of  \delta {T}_{Lp} to the Langevin stochastic model
	Summary and concluding remarks
	Acknowledgments
	References


